Földrengés



földrengés a földfelszín egy darabjának hirtelen bekövetkező és néha katasztrofális következményekkel járó mozgása. A földrengések általában a földkéregben felgyülemlett energia felszabadulásakor keletkező lökéshullámok, melyek a keletkezési pontból, amit a földrengés hipocentrumának nevezünk, gömbhéjszerűen terjednek minden irányba. A feszültség több okból halmozódhat fel. Ebből következik, hogy a földrengések a Föld különböző részein keletkeznek. A legnagyobb feszültségek a kőzetlemezek találkozásánál keletkeznek, és a földrengések jelentős része ezen a területen alakul ki. (Ha megnézzük a képet, nagyon jól kirajzolódnak rajta a lemezhatárok.)
Ezeket a földrengéseket nevezzük interplate (lemezek közti) földrengéseknek. Megfigyeltek földrengéseket a lemezszegélyektől távol a kőzetlemezek belsejében is, ezeket intraplate (lemezen belüli) földrengéseknek nevezzük, ennek kialakulási okai még nem teljesen tisztázottak. Ezeket a földrengéseket, amiket a lemezek mozgása okoz, tektonikus rengéseknek nevezzük (például vulkánkitörés hatására, amikor a földrengést a felfelé törekvő magma okozza). Az ember is okozhat földrengéseket a föld alatti kísérleti atomrobbantásokkal. Ezt a hatást használták fel arra, hogy az atomrobbantásokat figyelemmel tudják kísérni, de mivel ezek mesterségesen keltett földrengések, nem szokták a földrengések közé sorolni őket.

Keletkezése

Nagyon nagy számú földrengés keletkezik a Földön nap mint nap, de ezeknek a rengéseknek a legnagyobb része az ember számára nem érzékelhető, úgynevezett mikroszeizmikus rengés.

 Az olyan rengéseket, amelyek az ember számára is érzékelhetőek makroszeizmikus rengéseknek nevezzük. Ilyenből naponta csak egy-kettő keletkezik.
A földrengések jelentős része a kőzetlemezek találkozásának közelében pattan ki. Ez azért van, mert az egyik kőzetlemez a másik alá bukik, és a lefelé haladás közben a lemezt felépítő kőzetek rugalmasan változtatják alakjukat, és amikor már nem bírják a keletkező feszültséget, a sok felgyülemlett energia földrengés formájában oldódik fel. Ez jelentősen átrendezi a két kőzetlemez felszínét. Egy földrengés kipattanása után mértek több 10 m-es szintbeli eltéréseket a rengés előtti állapothoz képest. Ezeket a rengéseket, amelyek 70 km-es mélységig keletkeznek sekély mélységű rengéseknek hívjuk. A kőzetlemez folyamatosan halad lefelé és kb. 600 km-es mélységben beleolvad az asztenoszférába. Ha a földrengés mélysége 70–300 km között van közepes mélységű rengésekről beszélünk majd végül a 300 km alatti rengéseket mély fészkű rengéseknek nevezzük.

Hatásai



A földrengések nagyon sokféleképpen tudnak rombolni és az emberi életben kárt tenni. A földrengések hatására keletkező másodlagos hatások sokszor sokkal rombolóbbak, mint maga a földrengés. A földrengés elsődleges hatása a lökéshullámok okozta rombolás, mert a házak nem tudnak ellenállni a folyamatos rázkódásnak és összedőlnek.


Másodlagos hatásnak nevezhetjük a földrengés hatására keletkező egyéb természeti jelenségeket, ezek közül is a legpusztítóbb, mint azt 2004 karácsonyán láthattuk is, a cunami, ami a tengerfenéken kipattanó rengés következtében a tengeren keletkező hullám, amely a part közelébe érve több 10 m magasra is megnőhet. Ezenkívül a földrengés kiválthat sokkal kevesebb emberi életet követelő természeti jelenségeket is, például földcsuszamlásokat és hegyomlásokat. A városokban a legpusztítóbb utóhatása a földrengéseknek a gázvezetékek eltörése miatt kialakuló tűzvész. A földrengés lökéshullámainak hatására bizonyos talaj típusok elveszthetik szilárdságukat, ez az ún. talajfolyósodás jelensége, amely szintén komoly károkat okozhat az épületekben..

Földrengéshullámok fajtái 

A földrengés során több fajta hullám keletkezik. A hullámokat két fő csoportra oszthatjuk, az egyik csoportot az úgynevezett térhullámok alkotják, ezek a Föld belsejében is képesek terjedni, a másik csoportot a felületi hullámok alkotják, amelyek csak a Föld felszínén terjednek.

A térhullámok

Longitudinális hullám: a hullámot más néven p (primer) hullámnak is nevezik, mert a szeizmogramokon ez a hullám jelentkezik először. A hullámban a részecskék terjedési iránya megegyezik a hullám haladási irányával, összehúzódási és kitágulási szakaszok követik egymást.

Transzverzális hullám: a

hullámot más néven s (szekunder) hullámnak is nevezik, mert a szeizmogramon a p hullámok után jelentkezik. Ebben a hullámban a részecskék terjedési iránya merőleges a hullám haladási irányára. Az s hullámok jellemzője, hogy a folyadékokban nem terjednek. Mivel ezek a hullámok terjednek a Föld belsejében is, és a különböző sűrűségű anyagokban különböző sebességgel haladnak, felhasználhatóak arra, hogy segítségükkel meghatározzák a Föld belső szerkezetét.


A felületi hullámok

Rayleigh-típusú hullám: nevét a hullámot matematikailag először leíró Lord Rayleigh-ről kapta. A hullámban a részecskék terjedési iránya merőleges a hullám haladási irányára. A hullám a Föld felszínén halad, és akár szemmel látható, mert az autók le-fel mozognak a hatására.

Love-típusú hullám: nevét a hullámot először 1911-ben leíró A. E. H. Love brit matematikusról kapta. Ebben a hullámban a részecskék a hullám síkjában mozognak. A sebessége általában nagyobb, mint a Rayleigh típusú hullámé.

Földrengések erőssége

Richter skála:

Richter-skála a földrengés erősségének műszeres megfigyelésen alapuló mérőszámát (a Richter-magnitudót, vagy más szóval a méretet) adja meg. A magnitudó a földrengéskor a fészekben felszabaduló energia logaritmusával arányos. Egy 4,5 méretű földrengés kipattanásakor nagyjából akkora energia szabadul fel, mint egy kisebb (20 kT-ás, nagaszaki méretű)atombomba robbanásakor.
Az eljárás kidolgozója Charles Richter, eljárását 1935-ben tette közzé.
A rengés erősségét megfelelő korrekciókkal a szeizmográf által jelzett legnagyobb kitérésből és az epicentrumtól való távolságából határozzák meg. (Maga az érték a földrengés helyétől 100 km távolságban lévő Wood-Anderson típusúszeizmográf által mikrométerben mért legnagyobb kitérés tízes alapú logaritmusa.)
Ebből értelemszerűen következik: a skála felfelé nyitott, vagyis nincs formális maximuma, bár a földrengések hatásmechanizmusa és a Föld szilárd kérgének mechanikai jellemzői alapján gyakorlatilag 10 feletti értékek nem fordulnak elő. Másik fontos jellemzője, hogy két látszólag "hasonló" magnitúdójú érték például 5,4 és 6,4 között a kipattanó energiában kb. 32-szeres különbséget takar. Gyakorlati szempontból nagyon fontos, hogy a földrengések magnitúdója és előfordulási gyakorisága között jól leírható kapcsolat van .
A Richter-skála a longitudinális és transzverzális hullámok különbségeit nem veszi figyelembe, és sok egyszerűsítő feltevést tartalmaz (nem veszi figyelembe a közeg inhomogenitását, az obszervatóriumok altalajának eltéréseit és a mérőműszerek különbözőségét sem).
Bevezetése óta a legnagyobb erősségű földrengés a Richter-skála szerint 9,5-es volt: 1960. május 22-én Chilében pattant ki.
Mercalli-skála:
Mercalli-skála vagy -intenzitás 12 fokozatú skála a földrengések erősségét tapasztalati úton, a földrengés által végzett pusztításból vezeti le. Gyakorlati jelentősége abban van, hogy a jól megválasztott, nem szakember által is érezhető jelenségek és kárleírások alapján viszonylag pontosan meghatározható a földrengés hatásterülete, és az epicentrumtól való távolságnak megfelelően csökkenő erőssége. Megfelelő számú érték alapján megszerkeszthető az ún. izoszeiszta térkép (az azonos intenzitású helyek felszíni megjelenése). Ez alapján jól becsülhető a földrengésfészek mélysége. Az eljárást Kövesligethy Radó magyar csillagász és geofizikus dolgozta ki.
Földrengések mérése:
A földrengések erősségének mérésére szeizmográfokat használnak.


 Ezek olyan elven működnek, hogy egy a kerethez lazán rögzített tehetetlen test és a földdel együtt mozgó keret relatív elmozdulását mérik. A jeleket felerősítik és papírra vagyszámítógépre rögzítik.